
Memory unsafety in Stak Scheme virtual machines
@raviqqe

June 7, 2025

https://github.com/raviqqe

Contents
Stak Scheme

Progress
Library system in eval procedure

case-lambda syntax

Memory unsafety in virtual machines

Future work

Stak Scheme
A bytecode compiler and virtual machine (VM) for Scheme

The compiler is written in Scheme.

The VM is written in Rust.

It aims to support the R7RS-small standard.

Forked from Ribbit Scheme

References

GitHub

Website

https://github.com/udem-dlteam/ribbit
https://github.com/raviqqe/stak
https://raviqqe.com/stak

Progress
Library system in eval procedure

case-lambda syntax

Library system in eval procedure
Stak Scheme now supports the define-library syntax in the eval procedure.

The eval procedure creates a new library environment for a given library
definition.

It also allows later calls to the eval procedure to import the defined libraries.

It is implemented by sharing logic of the library system in the bytecode compiler.
Compiler inception again :)

VM memory unsafety

What is missing in Stak Scheme virtual machine?

Ribbit Scheme's design achieves simplicity, performance, portability, and
extensibility at the same time.

A Compact and Extensible Portable Scheme VM

Stak Scheme adopts the same design and architecture of the language
processor.

What is missing??
Security!

https://www.iro.umontreal.ca/~feeley/papers/OLearyFeeleyMOREVMS23.pdf

VM memory unsafety in Stak Scheme

The host language of Rust is memory safe.

So the virtual machine of Stak Scheme is memory safe.

However, Scheme programs are not memory safe in terms of memory on the
virtual machine.

You can violate invariants of the VM memory relatively easily.

Today, we call this VM memory unsafety.

It is intentionally VM memory unsafe.
Performance gets higher without type checks.

The unsafety enables primitive operations in bytecodes.
e.g. direct manipulation of stacks

Current status

For both host and VM memory safety

Checks in the current implementation
i. Language-level type checks

ii. Primitive type checks
i.e. cons or number

iii. Index bound check on memory read/write

iv. Index bound check on pointer construction

Upcoming plans

1 in Rust?

4 instead of 3?

Future work
Unicode support

include syntax

Tree shaking

Synchronous and asynchronous APIs in the same crate

Summary
Building Scheme is fun!

