Memory unsafety in Stak Scheme virtual machines

@ravigge
June 7, 2025


https://github.com/raviqqe

Contents

Stak Scheme

Progress
o Library system in eval procedure

o case-lambda Syntax
e Memory unsafety in virtual machines

Future work



Stak Scheme

e A bytecode compiler and virtual machine (VM) for Scheme
o The compiler is written in Scheme.

o The VM is written in Rust.
e It aims to support the R7RS-small standard.
e Forked from Ribbit Scheme

References

e GitHub
e \Website


https://github.com/udem-dlteam/ribbit
https://github.com/raviqqe/stak
https://raviqqe.com/stak

Progress

e Library system in eval procedure

e case-lambda Syntax



Library system in eval procedure

e Stak Scheme now supports the define-library syntax inthe eval procedure.

e The eval procedure creates a new library environment for a given library
definition.

e It also allows later calls to the eval procedure to import the defined libraries.

e Itis implemented by sharing logic of the library system in the bytecode compiler.
o Compiler inception again :)



VM memory unsafety



What is missing in Stak Scheme virtual machine?

e Ribbit Scheme's design achieves simplicity, performance, portability, and
extensibility at the same time.
o A Compact and Extensible Portable Scheme VM

o Stak Scheme adopts the same design and architecture of the language
processor.
e What is missing??
o Security!


https://www.iro.umontreal.ca/~feeley/papers/OLearyFeeleyMOREVMS23.pdf

VM memory unsafety in Stak Scheme

e The host language of Rust is memory safe.
e So the virtual machine of Stak Scheme is memory safe.

e However, Scheme programs are not memory safe in terms of memory on the
virtual machine.

o You can violate invariants of the VM memory relatively easily.
o Today, we call this VM memory unsafety.

e Itis intentionally VM memory unsafe.
o Performance gets higher without type checks.

o The unsafety enables primitive operations in bytecodes.
= e.g. direct manipulation of stacks



Current status

e For both host and VM memory safety

e Checks in the current implementation
i. X Language-level type checks

ii. XX Primitive type checks
= |.2. CONS or number

lil. Index bound check on memory read/write

iv. X Index bound check on pointer construction

Upcoming plans

e 1in Rust?

e 4 |nstead of 3?



Future work

Unicode support

e include syntax

Tree shaking

e Synchronous and asynchronous APIs in the same crate



Summary

e Building Scheme is fun! %=



