
Stak Scheme: The tiny R7RS-small implementation

Scheme Workshop 2025

Yota Toyama

1

Background
Ribbit Scheme, the tiny R4RS implementation

R4RS REPL in 7 KB

Compact, portable, fast, and simple

Two separate components
Compiler written in Scheme

Virtual Machine (Ribbit VM, or just RVM) written in x86-64 assembly, C,
Javascript, Bash, ...

2

https://github.com/udem-dlteam/ribbit

Can we implement the entire R7RS-small standard
on RVM?

3

Yes, we can!

4

Stak Scheme
Stak Scheme, the tiny R7RS-small implementation

The same language design as Ribbit Scheme

Two use cases
Embedded scripting language

Standalone interpreter

Open source on GitHub: raviqqe/stak

Stak Ribbit

"Bytecode" encoding Structured memory snapshot Serialization + ad-hoc merging

eval procedure The compiler itself A separate library

5

https://github.com/raviqqe/stak

String

length pointer

code pt pointer

code pt pointer

Character

code pt pointer

null

...

RVM in depth
Ribbit VM (RVM)

A stack machine

Everything is a list.
Code

Values
e.g. lists, characters,
strings, ...

Call/value stacks

"Von Neumann architecture"
Both code and data in heap

6

Code graph
A representation of a Scheme program on memory

Directed Acyclic Graph (DAG) of pairs

Contains both code and data.
e.g. no special interpreter for eval

fibonacci

lambda x

call

call

get 0 call

<

call

-

call

call +

const 2 if
get 0

get 0 const 1

get 1 const 2

7

Compiling and running a program
The compiler compiles source code into a code graph.

The VM runs the code graph as a program.

Code graphs are used at both compile time and runtime.

Compiler

source code compile code graph encode bytes

VM

bytes decode code graph run

8

Example

Scheme

; Define a `(foo)` library.
(define-library (foo)
 (export foo)

 (begin
 (define foo 123)))

; Import the `foo` variable with a prefix.
(import (prefix (foo) bar-))

; Define another `foo` variable.
(define foo 456)

(+ bar-foo foo) 9

Example

Code graph

main

library

set

foo

get
set

foo

get

"foo"

const

const

call123

456

+

10

42 ptr

123 ptr 456 ptr ptr 789

...

1. Decode and add
to cache

2. Get from cache

3. Get and remove
from cache

2
3

cache

1

...

Encoding for
structured memory
snapshot

A code graph is encoded by a
topological sort.

Caches shared nodes

A cache table as a list

Simple and portable

It naturally encodes:
if instructions' continuations

Symbols from different
libraries

i (

11

eval and the compiler
eval = compiler + VM

The compiler from S-expression to code graph is defined as data.

(incept compiler source) embeds the compiler into source code.

((eval compiler) source) compiles the source code into a code graph.

Compiler
compile

embed
source parse incept compile' encode bytes

12

Macros and libraries in eval
R7RS-small adds some good programming constructs...

Hygienic macros
i.e. define-syntax and syntax-rules

Library system

Macros and libraries are expanded at compile time.

eval needs their information at runtime.
Macro definitions

Initialization code for libraries

The encoding/decoding transfers macro and library data naturally.

13

Compactness
TR7, the tiniest R7RS-small implementation before Stak Scheme

Stak Scheme implements all the procedures and syntaxes from R7RS-small with
some limitations.

Only integers and floating-point numbers

Partial handling of Unicode

Lines of code Binary size (bytes)

mstak 9,127 108,648

tr7i 16,891 301,536

14

Benchmarks
Relative computation time

Fast startup time for small programs

Benchmark mstak stak
mstak

(embed)
stak

(embed)
tr7i gsi chibi gosh

empty 1.00 1.04 0.14 0.38 0.77 0.51 3.63 1.27

hello 1.00 1.04 0.13 0.36 0.73 0.53 9.84 3.62

fibonacci 1.00 1.12 0.96 1.05 1.35 1.66 0.93 0.45

sum 1.00 1.13 1.01 1.06 1.19 1.64 0.98 0.24

tak 1.00 1.09 0.89 0.98 0.96 1.23 1.21 0.54

15

Future work
Type checking

RVM is flexible but not as secure as other modern ones.

Porting to another host language
e.g. Go, TypeScript, assembly...

Unicode in the (scheme char) library

Full numeric tower

16

Acknowledgements
Huge thanks to:

Developers of Ribbit Scheme
Especially, the dynamic programming language team at the University of
Montréal

Léonard Oest O’Leary and William E. Byrd for early comments on the draft

@sisshiki1969 and @yhara for discussions on the language processor design

And, of course, all the reviewers!

17

https://github.com/sisshiki1969
https://github.com/yhara

Interpreter demo
Interpreter: https://raviqqe.com/stak/demo/standalone/interpreter

Compiler: https://raviqqe.com/stak/demo/standalone/compiler

18

https://raviqqe.com/stak/demo/standalone/interpreter
https://raviqqe.com/stak/demo/standalone/compiler

Appendix

19

If instruction

(display (if x "foo" "bar"))

data reference

control flow
get

x

const

"foo"

call displayif
const

"bar"
20

Duplicate strings

(display "foo")
(display "foo")
(display "bar")

const

"foo"

const const

"bar"

call call call

display

21

Code graph in depth
A pair consists of car , cdr , and a tag on the side of cdr .

Tags represent either instructions or data types.

Universal representation for both in-memory bytecode and Scheme values

car . cdrₜ car . cdrₜ
car . cdrₜ

car . cdrₜ

car . cdrₜ

car . cdrₜ

car . cdrₜ

22

Fibonacci function

fibonacci

lambda x

call

call

get 0 call

<

call

-

call

call +

const 2 if
get 0

get 0 const 1

get 1 const 2

23

