Stak Scheme: The tiny R7RS-small implementation

Scheme Workshop 2025

Yota Toyama

Background

e Ribbit Scheme, the tiny R4RS implementation
o R4RS REPL In 7 KB

o Compact, portable, fast, and simple

e Two separate components
o Compiler written in Scheme

o Virtual Machine (Ribbit VM, or just RVM) written in x86-64 assembly, C,
Javascript, Bash, ...

https://github.com/udem-dlteam/ribbit

Can we implement the entire R7RS-small standard
on RVM? @

Yes, we can! &

Stak Scheme

e Stak Scheme, the tiny R7RS-small implementation
o The same language design as Ribbit Scheme

e TWO Use cases
o Embedded scripting language

o Standalone interpreter

e Open source on GitHub: ravigge/stak

Stak Ribbit
"Bytecode" encoding Structured memory snapshot Serialization + ad-hoc merging

eval procedure The compiler itself A separate library

https://github.com/raviqqe/stak

RVM iIn depth

e Ribbit VM (RVM)
o A stack machine
e Everything is a list.
o Code

o Values
= e.g. lists, characters,
strings, ...

o Call/value stacks

e "Von Neumann architecture"
o Both code and data in heap

Code graph

e Arepresentation of a Scheme program on memory
o Directed Acyclic Graph (DAG) of pairs

e Contains both code and data.
o e.g. no special interpreter for eval

‘(,.'b[lambda x} -------- » getO const 2 call . - e

S get0 const 1 call

call call f--o----

Compiling and running a program

e The compiler compiles source code into a code graph.

e The VM runs the code graph as a program.

e Code graphs are used at both compile time and runtime.

[source code}

------- -» compile

Compiler

------ >[code graph}----»

encode {---

VM

decode - -[code graph}----» run

Example

Scheme

; Define a " (foo) library.
(define-1library (foo)
(export foo)

(begin
(define foo 123)))

; Import the "foo variable with a prefix.
(import (prefix (foo) bar-))

; Define another "foo variable.
(define foo 456)

(+ bar-foo foo)

Example

Code graph

10

Encoding for
structured memory
shapshot

e A code graph is encoded by a
topological sort.
o Caches shared nodes

o A cache table as a list
e Simple and portable

e It naturally encodes:
o if Instructions' continuations

o Symbols from different
libraries

S

11

eval and the compiler

e eval = compiler + VM

The compiler from S-expression to code graph is defined as data.

e (incept compiler source) embeds the compiler into source code.

e ((eval compiler) source) compiles the source code into a code graph.

source

parse

Compiler

compile

>

iIncept

/\b

Yembed””

compile’

encode

12

Macros and libraries in eval

R7RS-small adds some good programming constructs...
o Hygienic macros

= |.e. define-syntax and syntax-rules

o Library system

Macros and libraries are expanded at compile time.

e eval needs their information at runtime.
o Macro definitions

o Initialization code for libraries

The encoding/decoding transfers macro and library data naturally.

13

Compactness

e TRY7, the tiniest R7RS-small implementation before Stak Scheme

e Stak Scheme implements all the procedures and syntaxes from R7RS-small with
some limitations.
o Only integers and floating-point numbers

o Partial handling of Unicode

Lines of code Binary size (bytes)
mstak 9,127 108,648
tr7i 16,891 301,536

14

Benchmarks

e Relative computation time

e Fast startup time for small programs

Benchmark mstak

empty
hello
fibonacci
sum

tak

1.00
1.00
1.00
1.00
1.00

stak

1.04
1.04
1.12
1.13
1.09

mstak
(embed)

0.14
0.13
0.96
1.01
0.89

stak
(embed)

0.38
0.36
1.05
1.06
0.98

tr7i

0.77
0.73
1.35
1.19
0.96

gsi

0.51
0.53
1.66
1.64
1.23

chibi

3.63
9.84
0.93
0.98
1.21

gosh

1.27
3.62
0.45
0.24
0.54

15

Future work

Type checking
o RVM is flexible but not as secure as other modern ones.

Porting to another host language
o e.g. Go, TypeScript, assembly...

Unicode in the (scheme char) library

e Full numeric tower

16

Acknowledgements

Huge thanks 4 to:

e Developers of Ribbit Scheme
o Especially, the dynamic programming language team at the University of
Montréal

e Leonard Oest O’Leary and William E. Byrd for early comments on the draft
e @sisshiki1969 and @yhara for discussions on the language processor design

e And, of course, all the reviewers!

17

https://github.com/sisshiki1969
https://github.com/yhara

Interpreter demo

o Interpreter: https://ravigge.com/stak/demo/standalone/interpreter

o Compiler: https://ravigge.com/stak/demo/standalone/compiler

RS

https://raviqqe.com/stak/demo/standalone/interpreter
https://raviqqe.com/stak/demo/standalone/compiler

Appendix

19

If Instruction

(display (if x "foo" "bar"))

'
.’
.
’
.

"foo"

"bar"

20

Duplicate strings

(display "foo")
(display "foo")
(display "bar")

21

Code graph in depth

e A pair consists of car , cdr , and a tag on the side of cdr .

o Tags represent either instructions or data types.

e Universal representation for both in-memory bytecode and Scheme values

car . cdrt

_—

/"

car . cdrt

car . cdrt

car . cdrt

car . cdrt

I

car . cdrt

_’

car . cdrt

22

Fibonacci function

A
..............................

'

if

call call

23

