
eval ing macros in Stak Scheme
@raviqqe

June 2, 2024

https://github.com/raviqqe

Contents
Stak Scheme

Macros in Scheme

Implementation in Stak Scheme

Demo

Future work

Stak Scheme
A bytecode compiler and virtual machine (VM) for Scheme

The compiler is written in Scheme.

The VM is written in Rust.

It aims to support R7RS-small.

Macros in Scheme
Macros are defined in source codes.

Usually in (define-library) forms.

Macros in Scheme can be expanded at compile time.
Stak's compiler does that.

(define-syntax or
 (syntax-rules ()
 ((_)
 #f)

 ((_ test)
 test)

 ((_ test1 test2 ...)
 (let ((x test1))
 (if x x (or test2 ...))))))

Macros in eval

The eval procedure evaluates S-expressions.
The expressions can be primitive values, procedure calls, or macro

expansions.

No macros or their information at runtime when they are expanded at compile time!

We need pass macros into runtime codes in some way.

Implementation of macros in eval in Stak
Scheme

($$macros) primitive

Used in Scheme source codes.

Expanded by a compiler into macro rules.

Macro rules are represented by lists, symbols, and literals.

At runtime, macros are compiled to macro transformers of procedures.

Implementation of macros in eval in Stak
Scheme

Macro expansion in eval

The eval procedure expands all macros in a given expression first.

Then, it compiles the expression into a temporary procedure and calls it.

Demo

Future work
Deduplication of codes between a compiler and the (scheme eval) library

Summary
Building macros in eval is fun!

