Embedding Stak Scheme in Rust

@ravigge
January 14, 2024


https://github.com/raviqqe

Contents

Embedding Scheme in Rust

e Related crates

Release process

Future work



Embedding Scheme in Rust

e Stak Scheme can be embeddable into Rust codes.
e Rust codes can simply "import" codes written in Stak Scheme.

e Currently, they can talk to each other only by I/O.
o Object interoperability (maybe) in the future (probably!)



Examples

use stak_device: :FixedBufferDevice;
use stak_macro::compile_r7rs;

use stak_primitive::SmallPrimitiveSet;
use stak_vm::Vm;

const HEAP_SIZE: usize = 1 << 16;
const BUFFER_SIZE: usize = 1 << 10;

let mut heap = [Default::default(),; HEAP_SIZE];

let device = FixedBufferDevice::<BUFFER_SIZE, 0>::new(&[]);
let mut vm = Vm::new(&nut heap, SmallPrimitiveSet::new(device)).unwrap();

const PROGRAM: &[u8] = compile_r7rs!(r#"
(import (scheme write))

(display "Hello, world!'")
"#);

vm.initialize(PROGRAM.iter().copied()).unwrap();
vm.run().unwrap();

assert_eq!(vm.primitive_set().device().output(), b"Hello, world!");



Examples

Macros

e compile_r7rs! compiles R7TRS Scheme codes into bytecodes.
e include_r7rs! Iincludes and compiles R7RS Scheme codes from a file path.

e They run at a compile time.



Related crates

e A stak-macro crate contains compile_r7rs! and include_r7rs! .

e A stak-compiler crate containsa compile_r7rs function which runs compiler
bytecodes and a VM for it to compile another Scheme program.
o The crate is not dependent on another Scheme interpreter.



Release process

e A (binary) bytecode file is bundled with a crate of stak-compiler on release.
o On development, they are built by build.rs .

o On cargo publish of the crate, the bytecode file is bundled as an asset.

e cargo install stak or the other crates do not require another Scheme
Interpreter anymore!



Future work

e Scheme embedded in Rust
o Scheme/Rust object interoperability
= VTable?

= Serde?
e Library system

e eval procedure



Summary

e Embedding Scheme in Rust is fun! ‘s



