
Bytecode encoding v2 in Stak Scheme
@raviqqe

December 22, 2024

https://github.com/raviqqe

Contents
Stak Scheme

Progress

Bytecode encoding v2

Future work

Stak Scheme
A bytecode compiler and virtual machine (VM) for Scheme

The compiler is written in Scheme.

The VM is written in Rust.

It aims to support the R7RS-small standard.

Forked from Ribbit Scheme

Progress
Bytecode encoding v2

Bytecode encoding v1 in Stak Scheme
In Stak (and Ribbit) Scheme, everything is a list.

Bytecodes and data values are represented by cons's or scalars (numbers.)

Only if instructions branch into two preceding instruction lists.

Immediate values in instructions can be of any data type.

A program can be considered as a DAG composed of cons's with instruction codes

interleaved with data.

We can just encode/decode DAG's of nodes with zero to two edges!

References

A R4RS Compliant REPL in 7 KB, Léonard et al.

https://arxiv.org/pdf/2310.13589

Bytecode encoding v1
It is roughly borrowed from Ribbit Scheme.

Decoding

1. Expand a symbol table.

Symbols may or may not have their string representations.

2. Decode instruction lists recursively as lists into memory.
On encoding, when we hit symbols or non-number constants, we look up the

symbol table and store their indices into decoded instructions.

3. On initialization, we initialize constants by executing constant initialization logic

attached at the beginning of the program.

Bytecode encoding v2
The new bytecode format is aimed for:

Simpler decoding

Faster startup time

Decoding

1. Decode instruction lists recursively as lists into memory.
Including both instructions and immediate values.

2. Done

References

https://github.com/raviqqe/til/tree/main/dag-encoder

https://github.com/raviqqe/til/tree/main/dag-encoder

Bytecode encoding v2

Pros

The new encoding algorithm:
Doesn't have any global symbol table during encoding/decoding.

Eliminates constant initialization at runtime.

They are natively marshalled and serialized into bytecodes.

Cons

Slightly bigger bytecode sizes
Up to around 1.5 times

Benchmarks

stak , the interpreter

Benchmark 1: /Users/raviqqe/src/github.com/raviqqe/stak/target/release/stak ~/foo.scm
 Time (mean ± σ): 127.4 ms ± 0.9 ms [User: 122.9 ms, System: 3.8 ms]
 Range (min … max): 126.6 ms … 130.1 ms 23 runs

Benchmark 2: ~/worktree/7a1181edfad9f3e5/target/release/stak ~/foo.scm
 Time (mean ± σ): 196.3 ms ± 2.9 ms [User: 190.8 ms, System: 4.4 ms]
 Range (min … max): 189.3 ms … 199.1 ms 15 runs

Relative speed comparison
 1.00 /Users/raviqqe/src/github.com/raviqqe/stak/target/release/stak ~/foo.scm
 1.54 ± 0.03 ~/worktree/7a1181edfad9f3e5/target/release/stak ~/foo.scm

Benchmarks

mstak , the minimal interpreter

Benchmark 1: /Users/raviqqe/src/github.com/raviqqe/stak/cmd/minimal/target/release/mstak ~/foo.scm
 Time (mean ± σ): 72.6 ms ± 1.9 ms [User: 68.1 ms, System: 3.7 ms]
 Range (min … max): 70.4 ms … 75.9 ms 40 runs

Benchmark 2: ~/worktree/7a1181edfad9f3e5/cmd/minimal/target/release/mstak ~/foo.scm
 Time (mean ± σ): 105.9 ms ± 3.3 ms [User: 101.2 ms, System: 3.8 ms]
 Range (min … max): 102.1 ms … 111.0 ms 26 runs

Relative speed comparison
 1.00 /Users/raviqqe/src/github.com/raviqqe/stak/cmd/minimal/target/release/mstak ~/foo.scm
 1.46 ± 0.06 ~/worktree/7a1181edfad9f3e5/cmd/minimal/target/release/mstak ~/foo.scm

Future work
Faster startup time Finally!

Easier integration with Rust

Better compatibility with the R7RS small

Summary
Building a bytecode encoder is fun!

