
Asynchronous operations in Stak Scheme

@raviqqe

May 10, 2025

https://github.com/raviqqe

Contents

Stak Scheme

Progress

Rust error handling in Scheme

The self-embedding compiler

Asynchronous operations in virtual machines

Future work

Stak Scheme

A bytecode compiler and virtual machine (VM) for Scheme

The compiler is written in Scheme.

The VM is written in Rust.

It aims to support the R7RS-small standard.

Forked from Ribbit Scheme

References

GitHub

Website

https://github.com/udem-dlteam/ribbit
https://github.com/raviqqe/stak
https://raviqqe.com/stak

Progress

Rust error handling in Scheme

The self-embedding compiler

Asynchronous operations in virtual machines

Rust error handling in Scheme

Stak Scheme could handle errors from Rust in a limited way.

Rust primitives return error values.

If we check returned values and they are error values, we throw the errors in

Scheme.

In the new implementation of error handling, Rust primitives return Result<V, E>

where E is an arbitrary error type.

The virtual machine captures such errors if error handlers are assigned in the

Scheme side.

Then, it continues execution from the points of the error handlers.

Rust error handling in Scheme

VM implementation in Rust

Error handler implementation in Scheme

https://github.com/raviqqe/stak/blob/d53e20ae2bca0a334fcc4513e54133a71279be99/vm/src/vm.rs#L100
https://github.com/raviqqe/stak/blob/d53e20ae2bca0a334fcc4513e54133a71279be99/prelude.scm#L1779

The self-embedding compiler

The Stak Scheme compiler compiles itself to embed it into the (scheme eval)

library while compiling given source codes.

The article about it

https://raviqqe.com/doc/posts/stak/inception/

Asynchronous operations in virtual machines

The Stak Scheme virtual machine now handles asynchronous operations.

Functions asynchronous potentially are marked with the winter-maybe-async

crate.

The current limitation is that it cannot make asynchronous and synchronous APIs

coexist...

Feature unification | The Cargo book

https://crates.io/crates/winter-maybe-async
https://crates.io/crates/winter-maybe-async
https://doc.rust-lang.org/nightly/cargo/reference/features.html#feature-unification

Demo

The REPL on browser thing

https://raviqqe.com/stak/

Future work

Synchronous and asynchronous APIs in the same crate

Unicode support

Tree shaking

case-lambda syntax

define-library syntax in the command line interpreter

include syntax

Summary

Building Scheme is fun!

