
Differences between Stak and Ribbit Scheme
@raviqqe

October 22, 2023

https://github.com/raviqqe

Contents
Ribbit Scheme

Stak Scheme

Differences between them

Progress

Next tasks

Ribbit Scheme
A small and portable R4RS implementation

Bytecode compiler and VM

Instructions and primitive functions

Everything is on heap.

Only integers and cons's

Bytecodes are lists.

A stack is a list.

A set of symbols is a list.

Stak Scheme
A fork of Ribbit Scheme

Its overall framework is the same as Ribbit Scheme.

Some details deviated from Ribbit Scheme.

There are some missing features from Ribbit Scheme.
e.g. incremental compilation and variadic instruction encoding

Primitive functions
In Ribbit Scheme, primitive functions push a result value in a new cons onto a

stack.

In Stak Scheme, it destructively updates a top of a stack.

In the design of Ribbit Scheme, we have both temporary values and bound

variables (ones in a function frame) in the same stack.

(foo (+ 1 2)) ; (+ 1 2) -> 3 is a temporary value.

(let ((x 42)) ; x -> 42 is a bound variable.
 (foo x))

Ribbit Scheme doesn't distinguish them and Stak does.

This implies that we do not need to push new values onto a stack always to
treat it as a persistent data structure for continuations.

apply procedure

(apply f xs)

In Ribbit Scheme, this is a primitive function.

In Stak Scheme, this is a part of calling convention.

Arguments Parameters Algorithm

Fixed Fixed Compare an argument count

Fixed Variadic Stuff overflown arguments into a list (1)

Variadic Fixed
Fill missing parameters with elements in the last

argument of a list (2)

Variadic Variadic (1) and (2)

Skip instruction encoding
Ribbit Scheme uses a special skip instruction to merge continuations of if

instructions on decoding bytecodes.
The Ribbit Scheme compiler does not mark codes as continuations.

This is an optional feature.

Stak Scheme provides the same feature by marking continuations of if
instructions.

It's a dirtier way but faster.
O(n^2) v.s. O(n)

The Ribbit Scheme compiler needs to search for continuations of if instructions

during encoding from bytecodes in memory into binary format while they are
known at compilation.

Progress
Record type

Dynamic wind

Parameter object

Exception

Website at https://raviqqe.github.io/stak/

https://raviqqe.github.io/stak/

Next tasks...
Self-hosting

Library system

