Hygienic macro on Stak Scheme

@ravigge
September 30, 2023


https://github.com/raviqqe

Contents

e Hygienic macro
o Qverview

o Implementation

e Progress
o New features

o Next tasks...



Hygienic macro



Overview

e A macro transcribes a source code into another source code.

e Hygienic macros must not:
o Insert a binding that captures a reference not introduced by the macro itself.

o Insert a reference that is captured by a binding not introduced by the macro
itself.

Scheme

e You can capture free variables in macros.
o Just like functions



Examples

Inserting a reference

Definition
(define x 42)

(define-syntax foo
(syntax-rules
((foo)

x)))

Use

(let ((x 13))
(foo)) ; -> x, 42 but not 13



Examples

Inserting a binding

Definition

(define-syntax foo
(syntax-rules
((foo x)
((lambda (y) x) 13))))

Use

(define y 42)

(foo y) ; -> ((lambda (y) y) 13), 42 but not 13



Implementation

e Based on "Macros That Work" by William Clinger

e With modifications for:
o Global variables

o Destructive update of syntactic environment

What to do?

e Track syntactic environment
o What do variables denote on definitions and uses of macros?

e Expanding macros while preserving the hygienic invariants
o Renaming variables introduced by macros


https://www.researchgate.net/publication/220997237_Macros_That_Work

Implementation

Representation of syntactic environment

e The environment field is an association list from symbols to their denotations.

(define-record-type expansion-context
(make-expansion-context environment)
expansion-context?
(environment expansion-context-environment expansion-context-set-environment!))



Implementation

Macro transformers

Definition

; (define-syntax foo (syntax-rules ...))
(define transformer
(make-transformer definition-context macro-transformer-definition))

(define new-environment
(environment-push environment name transformer))

Use

; (foo ...)
(transformer use-context expression)



Implementation

Expanding macros

e Rename free variables introduced by macros.

o Keep denotations on the use of macros.

(define (fill-template definition-context use-context matches template)
(cond
((symbol? template)
(let ((pair (assv template matches)))
(1f pair
(cdr pair)
(let (
(name (rename-variable use-context template))
(denotation (resolve-denotation definition-context template)))
(when (denotation? denotation)
(expansion-context-set! use-context name (denotation-value denotation)))
name))))



Stak Scheme

e It had only the "poisonous"” syntax-rules macro.

e Now, it's hygienic!
o ~300 lines in total
= syntax-rules pattern match

= Hygienic macro definition and expansion

e Supports most of macro constructs from R7RS

o defline-syntax
o let-syntax
o letrec-syntax

o syntax-rules



References

« BiwaSchemelZhygienic macroz AN | €EHI—N77v 7 870 yhara

Macros That Work (a paper)

Hygienic Macros Through Explicit Renaming

e 5.2 Hygienic macros | Gauche

Hygienic macro | Wikipedia


https://www.researchgate.net/publication/220997237_Macros_That_Work
https://dl.acm.org/doi/pdf/10.1145/1317265.1317269
https://practical-scheme.net/gauche/man/gauche-refe/Hygienic-macros.html
https://en.wikipedia.org/wiki/Hygienic_macro

Progress



New features

Hygienic syntax-rules

e Quasi-quotation

e read and write procedures
Ports and EOF objects



New features (continued)

e Symbol table GC

e apply procedure
o Ribbit Scheme implemented it as a primitive.

o Stak Scheme realizes it as an extension of calling convention in a VM.
= Variadic arguments and parameters are symmetric.

= e.g. Python, Ruby, and JavaScript


https://github.com/udem-dlteam/ribbit/tree/main

Next tasks...

e Record type
e cond-expand

e Self-hosting



Summary

e Building hygienic macros is fun.



