Stak Scheme

@ravigge
August13,-2023 September 10, 2023

https://github.com/raviqqe

Contents

Overview
e Virtual Machine (VM)

e Bytecodes
e Compiler

e What's implemented so far

Overview

e Stak Scheme
o There is a typo. (no "c")

o https://github.com/raviqge/stak

Scheme runs on a machine stack.
o NO std and no alloc

e Compiler written in Scheme + VM written in Rust

e Based on Ribbit Scheme
o Stak VM does not pursue portability.

o The VM is specialized for implementation in system programming languages.

https://github.com/raviqqe/stak
https://github.com/udem-dlteam/ribbit/tree/main

Virtual Machine (VM)

e Stack machine

e VVon Neumann architecture (?)
o All bytecodes, stack, heap objects are on VM heap.

e \Written in Rust

e NO unsafe so far

Virtual Machine (VM)

State

e Program counter
o Points to bytecodes running currently

e Stack
o Represented as a list

e Symbols
o Represented as a list of pairs

e Heap (as an unboxed array)
o If someone wants to run a VM on actual heap, they can simply box it with, for
example, Box::new() .

Bytecodes

e Mostly borrowed from Ribbit Scheme

e Represented as lists

e Core instructions

©)

@)

@)

©)

@)

call : Procedure calls

set . Set global/local variables
get : Get global/local variables
constant : Push constants

if : Branch based on condition values

e Primitives: rib , cons, close, ...

https://github.com/udem-dlteam/ribbit/tree/main

Compiler

Main routine

(write-target (encode (compile (expand (read-source)))))

read-source reads S-expressions from stdin.

expand expands syntax sugar (e.g. let , letrec, etc.)
compile compiles S-expressions into bytecodes.
encode encodes bytecodes on memory into bytes.

write-target writes encoded bytecodes into stdout.

What's implemented so far

Syntax

e Function/variable definitions

Closures

Binding expressions
o e.g. let, let*, letrec, ...

Conditional expressions

o e.g. if , cond, when, ...

e begin block

What's implemented so far

Built-ins

Arithmetic operations

Comparison operations

Boolean operations

List operations (car , cdr , cons, map, length ...)

Continuation (call/cc)

e error

What's implemented so far

Types

e Signed 63-bit integer
e Boolean

e Pair / Null

e Symbol

Character

String

Vector / Bytevector (as list)

Procedure

What's implemented so far from the last missed
meetup

® define-syntax , let-syntax, letrec-syntax
e Non-hygienic syntax-rules

o Efficient representation of argument counts at call sites

Next tasks...

e Hygienic syntax-rules
e Quasi-quotation

e Record type

e write and display

e read

e cond-expand

Summary

e Building Scheme is fun.

References

e Ribbit Scheme
e R7RS

https://github.com/udem-dlteam/ribbit/tree/main
https://small.r7rs.org/attachment/r7rs.pdf

