
System Injection
Side effect management in Pen

@raviqqe

https://github.com/raviqqe

What is System Injection?

Pen has a feature called System Injection.

It manages side effects of functions.

It injects system functions into whole applications.

System functions are passed as arguments of main functions to applications.

No other functions can have side effects by themselves; side effects are always
injected through function arguments.

What is it based on?

Dependency injection

Monads

Effect systems

Clean architecture

Benefits of system injection

It improves maintainability and portability of software.

Unit tests are deterministic.
No more slow or flaky tests!

Better software architecture
Application logic doesn't depend on implementation details directly.

They are decoupled and changeable independently.

It's easier to port applications isolated from platform-dependent codes.

Costs of System Injection

Extra cognitive load
Enforcement of dependency injection

Context arguments

In the short term, it doesn't pay for the cost...
More like investment

The same as unit tests, or any other software engineering methodologies

Pen is not for scripting, or software with short expectancy in general.

print = \(ctx Context, s string) none | error {
 File'Write(ctx, File'StdOut(), s)?

 none
}

Common questions

How do we run nondeterministic tests?

1. Replace nondeterministic codes with deterministic codes.

2. List up examples as separate tests.

In other words, choose the timelines.

Common questions

Why not effect systems (or monads)?

Modern researches propose "statically provable" effect systems.
As extensions of type systems

They incur extra cognitive costs for developers to understand and use it.

System Injection is rather a dynamically typed effect system.

Also, they do not work well with programming languages without generics.
Like Go

High-order functions always need to have two versions for pure and impure
implementations.

Functional programming | Clojure

Clojure is impure, in that it doesn’t force your program to be referentially
transparent, and doesn’t strive for 'provable' programs.

https://clojure.org/about/functional_programming

Running integration tests

Deterministic tests are good but that doesn't mean we don't need to test E2E.

Currently, Pen has no way to run integration tests.

pen test --integration ?

It's also possible to delegate them to third party tools.

Summary

System Injection gives us:
Deterministic, fast, reliable unit tests.

Clean software architecture

Integration tests are WIP.

Feedback is welcome!

