Nondeterministic parallel computation in Pen

August 7th, 2022

@raviqge

https://github.com/raviqqe

Overview of Pen

e Functional programming

Immutable values

Inductive values
o Reference counting with in-place mutation

o No circular dependency

Capability-based effect system
o Pass down "effect arguments" to functions.

Parallel computation without data race
o Synchronization by data structures (e.g. thunks, lazy lists, etc.)

Examples

Capability-based effect system

import Os'Console

main = \(os 0s) none | error {
Console'Print(os, "Hello, world!")?

none

}

Nondeterministic parallel computation

e Parallel computation is nondeterministic in general.
e You can't know which codes finish first (or even if they do!) before running them.

 Nondeterminism is not necessary for parallel computation.
o e.g. purely functional programs can be parallelized automatically.

 Nondeterminism sometimes gives better performance in parallel computation.
o e.g. consumers want to consume values in an order in which they get

produced.

Nondeterminism in other languages

Promise in JavaScript

const foo = async () => {
LT

i

const bar = async () => {
/]
3

const main = async () => {
const x = foo();
const y = awailt bar(),

(await x) + vy,

i

Channels in Go

func main() {
cl := make(chan string)
c2 := make(chan string)

go func() {
cl <- "fast"

3()

go func() {
time.Sleep(1l * time.Second)
c2 <- "slow"

3()

select {

case msg := <-cl:
fmt.Println(msg)

case msg := <-c2:
fmt.Println(msg)

¥

}

Promise.race() in JavaScript

Promise.race([compute(x), compute(y)]);

Examples Iin Pen

Futures

e Deterministic parallel computation

import 0Os'Console

f = \(x foo, y foo) bar {
v = go(\() number {
computeA(x)

1)

w = computeB(Yy)

aggregate(v(), w)
}

Examples in Pen

Racing two futures

e Nondeterministic parallel computation

import 0Os'Console

f = \(x foo, y foo) [number] {
race([[number] [number computeA(Xx)], [number computeB(y)]])

}

Examples in Pen

Lazy lists (streams or channels)

e Nondeterministic parallel computation

import Os'Console

f = \(x foo, y foo) [number] {
computeA and computeB produces two series of data computed concurrently.
race([[number] computeA(x), computeB(y)])

}

What else do we need?

e The go and race bulilt-in functions can represent many concurrency patterns
found in other languages.
o Concurrency in Go

e Circular dependency is apparently impossible to get represented.
o e.g. actors talking to and depending on each other

e There isn't any research on what primitives for concurrent/parallel computation is
necessary for programming languages.

e EXxisting researches are more about what we can build on the currently available
primitives like multi-core CPUs, threads, atomic memory operations, etc.

https://www.oreilly.com/library/view/concurrency-in-go/9781491941294/

Summary

e Pen now has two go and race built-in functions.
e They can represent many concurrent/parallel programming patterns.

e Questions
o Are they expressive enough in practice?

o What concurrent/parallel computation primitives are necessary for languages
to be expressive enough?

o Application development?

