Compiler optimization in Pen

@raviqge



Pen's compiler is 4.5 times faster!

e Since the last meetup



Experiment

e Program: pen compile-prelude subcommand

e File: packages/prelude/Map.pen
o Runtime module for the built-in map type

o ~600 lines

Latency (ms)
Before 358
After 80



What made the compiler faster?

e Code
o Imperative vs. functional

o Read vs. write optimized data structures
e Data

o Minimizing data

o Sharing data

o "Compressing" IR



Imperative vs. functional

e Transformation for functional languages often written in a functional way.
o In papers and books

e It's faster to run imperative algorithms with destructive data structures in Rust.
o Sometimes, codes get even shorter and more concise.

e |teration over recursion
o No tail call elimination in Rust %

Examples

e CPS (continuation passing style) transformation

e Type conversion



Read vs. write optimized data structures

e Hash maps are often used to represent variable scopes and their types.

e They are sometimes write heavy.
o Data is modified more often than it is read.

Examples

e Using lists as maps to track variable types
o List (String, Type)

o It was faster than using persistent data structures.

m ]ist < hash map < persistent hash map



Minimizing data

e Minimize enum S.
o If only a member is too big, the enum gets also big.

o There would be too many empty data in a collection of them.

o Box large members.

Examples

e Expression In MIR

e Instruction, Expression,and Type In F--



Sharing data

e Use &T if possible.

e Use Rc Iif necessary.
o Sometimes, cloning is the only option.

o e.g. borrowing instructions' result names while modifying the instructions
themselves

e Even creating String s is slow when there are too many of them.

Examples

e Collecting types of local variables

e Collecting free variables of continuations



"Compressing” IR

It's better to "decompress” IR (intermediate representation) later.
o Function inlining

o Reference count operations
= e.g. clone, drop

Split those common codes into functions in IR.

All the later passes get slower by the increased data size.

LLVM handles the "decompression” anyway.
o Function inlining

o CSE



Future work

Apply those methods everywhere.
e Slow type canonicalization in HIR

e Rc all the things (?)

Function passes
o Is it better for L1 and L2 caches?



