
Compiler optimization in Pen
@raviqqe

Pen's compiler is 4.5 times faster!
Since the last meetup

Experiment
Program: pen compile-prelude subcommand

File: packages/prelude/Map.pen

Runtime module for the built-in map type

~600 lines

Latency (ms)

Before 358

After 80

What made the compiler faster?
Code

Imperative vs. functional

Read vs. write optimized data structures

Data

Minimizing data

Sharing data

"Compressing" IR

Imperative vs. functional
Transformation for functional languages often written in a functional way.

In papers and books

It's faster to run imperative algorithms with destructive data structures in Rust.

Sometimes, codes get even shorter and more concise.

Iteration over recursion

No tail call elimination in Rust

Examples

CPS (continuation passing style) transformation

Type conversion

Read vs. write optimized data structures
Hash maps are often used to represent variable scopes and their types.

They are sometimes write heavy.
Data is modified more often than it is read.

Examples

Using lists as maps to track variable types
List (String, Type)

It was faster than using persistent data structures.
list < hash map < persistent hash map

Minimizing data
Minimize enum s.

If only a member is too big, the enum gets also big.

There would be too many empty data in a collection of them.

Box large members.

Examples

Expression in MIR

Instruction , Expression , and Type in F--

Sharing data
Use &T if possible.

Use Rc if necessary.

Sometimes, cloning is the only option.

e.g. borrowing instructions' result names while modifying the instructions

themselves

Even creating String s is slow when there are too many of them.

Examples

Collecting types of local variables

Collecting free variables of continuations

"Compressing" IR
It's better to "decompress" IR (intermediate representation) later.

Function inlining

Reference count operations

e.g. clone, drop

Split those common codes into functions in IR.

All the later passes get slower by the increased data size.

LLVM handles the "decompression" anyway.

Function inlining

CSE

Future work
Apply those methods everywhere.

Slow type canonicalization in HIR

Rc all the things (?)

Function passes
Is it better for L1 and L2 caches?

