
Progress report in the Pen programming language
@raviqqe

https://github.com/raviqqe

Progress report

List comprehension
An easy way to construct lists with computation of their elements.

Monadic

e.g. Haskell, Python

In Haskell

[x + y | x <- xs, y <- ys, x != y]

In Pen

The syntax is borrowed from Python.

[number x() + y() for y in ys for x in xs if x != y]

List comprehension

Concrete examples (1)

Map

[number f(x()) for x in xs]

Filter

[number x() for x in xs if Remainder(x(), 2) == 0]

Flatten

[number x() for x in xs() for xs in xss]

List comprehension

Concrete examples (2)

Permutate

[number f(x(), y()) for y in ys() for x in xs]

Filter by a type

[number
 x()
 for x in if x = x() as number { [number x] } else { [number] }
 for x in xs
]

List comprehension

Thoughts

One of Pen's philosophy is to be a minimal language.
Where language features are orthogonal.

In the same way as Go
https://go.dev/talks/2010/ExpressivenessOfGo-2010.pdf

Thus, there is no syntax sugar and AST and HIR is one to one.

It's tiresome to experiment with new language features!

On the other hand, you just transpile list comprehension with do notation or
monadic operations in Haskell.

https://go.dev/talks/2010/ExpressivenessOfGo-2010.pdf

Future work (ideas)

Parallel list comprehension
Natural extension to list comprehension for zip-ish computation

Not related to parallel computation

In Haskell

[x + y | x <- xs | y <- ys]

In Pen

[number x() + y() for x, y in xs, ys]

Performance optimization
Lazy lists

List fusion
Removal of intermediate lists

Is this easy to implement for impure languages?

Thunk optimization

Heavy use of thunks
Constant propagation

Thunk to function conversion

Inlining

Stack operations

How much can LLVM understand and optimize tail-called functions?

Near-future work
More little language features

Parallel list comprehension

sort built-in function

Code generator

Language server

Summary
Pen has monadic list comprehension now!

I want to make progress...

