
Stack operation optimization in Pen

November 13, 2022

@raviqqe

https://github.com/raviqqe


Continuation Passing Style (CPS)



Direct style

f = \(x) {
  y = g()

  x + y
}

CPS

f = \(k, x) {
  g(\[k, x](y) {
    k(x + y)
  })
}



CPS for consecutive function calls

Direct style

f = \(x) {
  y = f()
  z = g()

  x + y + z
}

CPS

f = \(k, x) {
  f(\[k, x](y) {
    f(\[k, x, y](z) {
      k(x + y + z)
    })
})



CPS in Pen
Pen uses CPS to make all functions suspendable.

i.e. every function is an async function.

Functions are suspended for I/O, synchronization, etc.

Pen doesn't support the first-class continuations.



CPS stack
Pen uses two stacks at runtime.

Machine stack

Nearly used other than reference count operations and foreign functions.

Heap-allocated stack
Used to allocate "continuations" in CPS

No need for heap allocation of each continuation



CPS transformation
1. Calculate environments of continuations.

2. Compile a direct-style IR to ANF.

Using the second-class continuations

3. Compile Pen-native function calls into CPS.



Function entrypoints

fn function_entrypoint_2<A1, A2, T, F: Fn(A1, A2) -> T>(
    stack: &mut Stack,
    continuation: fn(stack: &mut Stack, result),
    closure: Arc<Closure<F>>,
    argument0: A0,
    argument1: A1,
) {
  // ...
}

Continuations are raw function pointers of their entrypoints.

Where are their environments?
In heap-allocated stacks!



Function calls
1. Create a continuation or pass it down from a caller.

2. Push environment of a continuation to a stack if necessary.

3. Call a function entrypoint with the continuation entrypoint.

Continuation entrypoint

1. Pop environment of a continuation from a stack if necessary.

2. Execute instructions.

What if those continuations' environments are the same or similar?



Examples
In a continuation,

We pop free variables of a , b , c .

In its continuation,
We push free variables of b , c .

In this case, we don't need to push the environment at all if stack elements are properly
ordered.

In general, if stack elements of continuations in a function are ordered properly, we can
calculate diff of those and generate codes only to fill the diff.



Stack operation optimization
Stack elements are ordered by an ascending order of 2 ^ frequency

frequency  is a frequency at which free variables appear in continuations
throughout a top-level function.

When we push environments of continuations, we rather use partial push if

applicable.
i. Pop all unused free variables.

ii. Push new free variables.



Result
5% size reduce in module object files

CPU time performance improvement was pretty minimal (~1%.)



Questions
Reinvention of the wheel?

Register coloring and active frame calculation?

async  generator state machines in Rust

In CPS, we can extend and shrink active frames.

Do we need minimum memory usage?
Tail call optimization + CPS = "stack GC"

Just use the maximum environment size throughout a function?

Is it more CPU-time friendly?



Summary
Stack operations are now fully optimized!



Appendix



Stack operations in CPS
In Add ,

504: 42 00 00 91  add x2, x2, #0
508: fd 7b 45 a9  ldp x29, x30, [sp, #80]
50c: 29 01 08 8b  add x9, x9, x8
510: 08 81 00 91  add x8, x8, #32         <-
514: f6 57 43 a9  ldp x22, x21, [sp, #48]
518: 28 29 01 6d  stp d8, d10, [x9, #16]  <-
51c: 29 05 00 fd  str d9, [x9, #8]        <-
520: 34 01 00 f9  str x20, [x9]           <-
524: 68 06 00 f9  str x8, [x19, #8]       <-
528: f4 4f 44 a9  ldp x20, x19, [sp, #64]



At the beginning of Add 's first continuation,

2a70: ff 03 01 d1  sub sp, sp, #64
2a74: 08 04 40 f9  ldr x8, [x0, #8]              <-
2a78: 09 00 00 90  adrp x9, 0x2000 <__k_1a+0x8>
2a7c: e9 23 01 6d  stp d9, d8, [sp, #16]
2a80: 08 40 60 1e  fmov d8, d0
2a84: f4 4f 02 a9  stp x20, x19, [sp, #32]
2a88: f3 03 00 aa  mov x19, x0
2a8c: 08 81 00 d1  sub x8, x8, #32               <-
2a90: fd 7b 03 a9  stp x29, x30, [sp, #48]
2a94: 08 04 00 f9  str x8, [x0, #8]              <-
2a98: 23 01 40 f9  ldr x3, [x9]



At the end of Add 's first continuation,

2ae4: 42 00 00 91  add x2, x2, #0
2ae8: fd 7b 43 a9  ldp x29, x30, [sp, #48]
2aec: 08 81 00 91  add x8, x8, #32         <-
2af0: 68 06 00 f9  str x8, [x19, #8]       <-
2af4: 28 69 28 fc  str d8, [x9, x8]        <-
2af8: 68 06 40 f9  ldr x8, [x19, #8]       <-
2afc: e9 23 41 6d  ldp d9, d8, [sp, #16]
2b00: 08 21 00 91  add x8, x8, #8          <-
2b04: 68 06 00 f9  str x8, [x19, #8]       <-
2b08: f4 4f 42 a9  ldp x20, x19, [sp, #32]



noalias

The first argument ( x0 ) is a stack argument for CPS.

Before:

.p2align 2                               ; -- Begin function _k_1a
__k_1a:                                 ; @_k_1a
; %bb.0:                                ; %entry

stp d9, d8, [sp, #-64]!             ; 16-byte Folded Spill
ldr x10, [x0, #8]

Lloh20:
adrp x9, "_Foo.pen:f"@PAGE+8
stp x22, x21, [sp, #16]             ; 16-byte Folded Spill
fmov d8, d0
stp x20, x19, [sp, #32]             ; 16-byte Folded Spill
mov x19, x0
sub x8, x10, #32
stp x29, x30, [sp, #48]             ; 16-byte Folded Spill
add x10, x10, #8
str x8, [x0, #8]

Lloh21:
ldr x21, [x9, "_Foo.pen:f"@PAGEOFF+8]
ldr x9, [x0, #16]
ldr x0, [x0]
cmp x10, x9
b.ls LBB6_2

; %bb.1:                                ; %then.i
lsl x20, x9, #1
mov x1, x20
bl __pen_realloc
ldr x8, [x19, #8]
str x0, [x19]
str x20, [x19, #16]

LBB6_2:                                 ; %_fmm_stack_extend.exit
add x9, x8, #32
add x8, x0, x8

Lloh22:
adrp x1, __k_15@PAGE

Lloh23:
add x1, x1, __k_15@PAGEOFF

Lloh24:
adrp x2, "_Foo.pen:f"@PAGE+8

Lloh25:
add x2, x2, "_Foo.pen:f"@PAGEOFF+8
str x9, [x19, #8]
mov x0, x19
str d8, [x8, #32]
ldr x8, [x19, #8]
add x8, x8, #8
str x8 [x19 #8]


