Progress report in Pen programming language

September 3, 2022

@raviqge

https://github.com/raviqqe

Agenda

e Progress report
o (Full) lambda lifting

o Shake game

e Next plans

Progress report

(Full) lambda lifting

e Flatten nested functions into global functions.

e Pen supports lifting closures with free variables.
o So far, it supported only the cases where no free variable exists.

e MIR normalization to the A-normal(-ish) form is also introduced for this change.
o In the future, It'll be easier to write passes at the MIR level.

References

e Lambda lifting | Wikipedia

https://en.wikipedia.org/wiki/Lambda_lifting

(Full) lambda lifting

Algorithm

Before:

f (X number) number {

= \

g = \(y string) number {
H ...

)

g(y)
}

(Full) lambda lifting

Algorithm

After:

f = \(x number) number {
lifted_g(y, x)

}

lifted_g = \(y string, X number) number {
oo

}

Benchmark

Speed up Heap allocation decrease
Hash map insert 6% 37.7%
Hash map update 5% 38.9%

e Probably, heap allocation is not a bottle neck in those cases...

e The bottle neck might be redundant hash calculation?

Snake game

Demo

Missing language features

e Pretty printing for debugging
e String concatenation operator

e General list pattern match
o Currently, Pen can match only a head and a tail.

Next plans

e More applications?
o Web services

o Games

e Language features

Summary

e Progress
o (Full) lambda lifting

o Shake game

e Next plans

Appendix

Benchmark results

> hyperfine -w 3 ./insert-*

Benchmark 1: ./insert-new
Time (mean + 0O): 248.7
Range (min .. max): 245 .4

Benchmark 2: ./insert-old

Time (mean + 0O): 261.1
Range (min .. max): 256.9
Summary

'./insert-new' ran
1.05 + 0.02 times faster

ms =+
ms ..

ms =+
ms ..

than

2.5 ms
252.8 ms

3.5 ms
269.2 ms

[User: 180.5 ms, System: 17.9 ms]
12 runs

[User: 193.0 ms, System: 17.6 ms]
11 runs

'./insert-old'

> hyperfine -w 3 ./update-*
Benchmark 1: ./update-new

Time (mean * 0O): 405.6

Range (min .. max): 401.8
Benchmark 2: ./update-old

Time (mean + O): 431.1

Range (min .. max): 422 .6
summary

'./update-new' ran
1.06 + 0.01 times faster

I+

ms
ms ..

I+

ms
ms ..

than

3.2 ms
410.9 ms

4.6 ms
438.2 ms

[User: 338.5 ms, System: 16.1 ms]
10 runs

[User: 360.9 ms, System: 19.1 ms]
10 runs

'./update-old’

> valgrind ./insert-old

==595278== Memcheck, a memory error detector

==595278== Copyright (C) 2002-2022, and GNU GPL'd, by Julian Seward et al.
==595278== Using Valgrind-3.19.0 and LibVEX; rerun with -h for copyright info
==595278== Command: ./insert-old

==595278==

==595278==

==595278== HEAP SUMMARY::

==595278== in use at exit: 10,784 bytes in 74 blocks

==595278== total heap usage: 1,073,769 allocs, 1,073,695 frees, 50,359,170 bytes allocated
==595278==

==595278== LEAK SUMMARY:':

==595278== definitely lost: O bytes in 0 blocks

==595278== indirectly lost: O bytes in 0 blocks

==595278== possibly lost: 320 bytes in 3 blocks

==595278== still reachable: 10,464 bytes in 71 blocks

==595278== of which reachable via heuristic:

==595278== newarray : 536 bytes in 2 blocks
==595278== suppressed: 0 bytes in 0 blocks

==595278== Rerun with --leak-check=full to see details of leaked memory
==595278==

==595278== For lists of detected and suppressed errors, rerun with: -s
==595278== ERROR SUMMARY: O errors from O contexts (suppressed: 0 from 0)

> valgrind ./insert-new

==597282== Memcheck, a memory error detector

==597282== Copyright (C) 2002-2022, and GNU GPL'd, by Julian Seward et al.
==597282== Using Valgrind-3.19.0 and LibVEX; rerun with -h for copyright info
==597282== Command: ./insert-new

==597282==

==597282==

==597282== HEAP SUMMARY:

==597282== in use at exit: 10,784 bytes in 74 blocks

==597282== total heap usage: 669,140 allocs, 669,066 frees, 34,174,010 bytes allocated
==597282==

==597282== LEAK SUMMARY:

==597282== definitely lost: O bytes in O blocks

==597282== indirectly lost: O bytes in O blocks

==597282== possibly lost: 320 bytes in 3 blocks

==597282== still reachable: 10,464 bytes in 71 blocks

==597282== of which reachable via heuristic:

==597282== newarray : 536 bytes in 2 blocks
==597282== suppressed: 0 bytes in 0 blocks

==597282== Rerun with --leak-check=full to see details of leaked memory
==597282==

==597282== For lists of detected and suppressed errors, rerun with: -s
==597282== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: O from 0)

> valgrind ./update-old

==599735== Memcheck, a memory error detector

==599735== Copyright (C) 2002-2022, and GNU GPL'd, by Julian Seward et al.
==599735== Using Valgrind-3.19.0 and LibVEX; rerun with -h for copyright info
==599735== Command: ./update-old

==599735==

==599735==

==599735== HEAP SUMMARY::

==599735== in use at exit: 10,784 bytes in 74 blocks

==599735== total heap usage: 2,083,027 allocs, 2,082,953 frees, 82,655,426 bytes allocated
==599735==

==599735== LEAK SUMMARY:':

==599735== definitely lost: O bytes in 0 blocks

==599735== indirectly lost: O bytes in 0 blocks

==599735== possibly lost: 320 bytes in 3 blocks

==599735== still reachable: 10,464 bytes in 71 blocks

==599735== of which reachable via heuristic:

==599735== newarray : 536 bytes in 2 blocks
==599735== suppressed: 0 bytes in 0 blocks

==599735== Rerun with --leak-check=full to see details of leaked memory
==599735==

==599735== For lists of detected and suppressed errors, rerun with: -s
==599735== ERROR SUMMARY: O errors from O contexts (suppressed: 0 from 0)

> valgrind ./update-new

==600256== Memcheck, a memory error detector

==600256== Copyright (C) 2002-2022, and GNU GPL'd, by Julian Seward et al.
==600256== Using Valgrind-3.19.0 and LibVEX; rerun with -h for copyright info
==600256== Command: ./update-new

==600256==

==600256==

==600256== HEAP SUMMARY::

==600256== in use at exit: 10,784 bytes in 74 blocks

==600256== total heap usage: 1,273,769 allocs, 1,273,695 frees, 50,285,106 bytes allocated
==600256==

==600256== LEAK SUMMARY::

==600256== definitely lost: O bytes in 0 blocks

==600256== indirectly lost: O bytes in 0 blocks

==600256== possibly lost: 320 bytes in 3 blocks

==600256== still reachable: 10,464 bytes in 71 blocks

==600256== of which reachable via heuristic:

==600256== newarray : 536 bytes in 2 blocks
==600256== suppressed: 0 bytes in 0 blocks

==600256== Rerun with --leak-check=full to see details of leaked memory
==600256==

==600256== For lists of detected and suppressed errors, rerun with: -s
==600256== ERROR SUMMARY: O errors from O contexts (suppressed: 0 from 0)

