
Progress report in Pen programming language

June 4th, 2022

@raviqqe

https://github.com/raviqqe


Agenda
Progress report

Heap reuse in record updates

Next plans



Progress report



Heap reuse in record updates
Programs reuse memory blocks if record updates are performed on unique

references.

Part of the Perceus reference counting algorithm

Limited to records with more than one field

One-field records are planned to be unboxed.

Similar to Arc::make_mut()  in Rust

type foo {
  bar number
  baz number
}

f = \(x foo) foo {
  # Reuse a memory block originally allocated for x if its reference is unique.
  foo{...x, bar: 42}
}

https://www.microsoft.com/en-us/research/publication/perceus-garbage-free-reference-counting-with-reuse/


Benchmark

Map insertion

Element count: 100,000

~20% improvement in time

Before:

> time ./app
./app  0.84s user 0.05s system 94% cpu 0.945 total

> valgrind ./app
total heap usage: 2,414,147 allocs, 2,414,074 frees, 262,931,512 bytes allocated

After:

> time ./app
./app  1.09s user 0.03s system 95% cpu 1.168 total

> valgrind /app



Further improvements

Still so many allocations in the benchmark...

Pen is missing some basic optimization.

e.g. lambda lifting

https://en.wikipedia.org/wiki/Lambda_lifting


Others
The standard Sql  package

FFI improvements

Conversion between lists in Pen and async streams in Rust

Type casting of any  type values

Attribute changes in LLVM

e.g. unnamed_addr , nounwind , etc.



Next plans
Reference counting optimization

Relaxed atomic reference counting with sync bit #468

Unboxing small records #671

Proper C calling convention in FFI #444
Compiling to MLIR?

https://github.com/pen-lang/pen/issues/468
https://github.com/pen-lang/pen/issues/671
https://github.com/pen-lang/pen/issues/444


Summary
Progress

Heap reuse in record updates

Next plans

Relaxed atomic reference counting

Record unboxing



Benchmark (old)

Map insertion (with list iteration)

Element count: 100,000

Before:

> time ./app
./app  0.94s user 0.08s system 95% cpu 1.064 total

> valgrind ./app
total heap usage: 3,414,149 allocs, 3,414,074 frees, 290,931,552 bytes allocated

After:

> time ./app
./app  1.10s user 0.05s system 95% cpu 1.202 total

> valgrind ./app
total heap usage: 3,446,295 allocs, 3,446,220 frees, 307,647,472 bytes allocated


