Progress report in Pen programming language

June 4th, 2022

@raviqge

https://github.com/raviqqe

Agenda

e Progress report
o Heap reuse In record updates

e Next plans

Progress report

Heap reuse in record updates

e Programs reuse memory blocks if record updates are performed on unique
references.

Part of the Perceus reference counting algorithm

Limited to records with more than one field
o One-field records are planned to be unboxed.

Similar to Arc::make_mut() In Rust

type foo {
bar number
baz number

}

f = \(x foo) foo {
Reuse a memory block originally allocated for x if its reference 1s unique.
foo{...x, bar: 42}

}

https://www.microsoft.com/en-us/research/publication/perceus-garbage-free-reference-counting-with-reuse/

Benchmark

e Map insertion
e Element count: 100,000

e ~20% improvement in time

Before:

> time ./app
/app 0.84s user 0.05s system 94% cpu 0.945 total

> valgrind ./app
total heap usage: 2,414,147 allocs, 2,414,074 frees, 262,931,512 bytes allocated

After:

> time ./app
/Japp 1.09s user 0.03s system 95% cpu 1.168 total

-~ I L | VP

Further improvements

» Still so many allocations in the benchmark...

e Pen is missing some basic optimization.
o e.g. lambda lifting

https://en.wikipedia.org/wiki/Lambda_lifting

Others

e The standard sql package

e FFI improvements
o Conversion between lists in Pen and async streams in Rust

o Type casting of any type values
e Attribute changes in LLVM

o €.¢g. unnamed_addr , nounwind , etc.

Next plans

e Reference counting optimization
o Relaxed atomic reference counting with sync bit #468

o Unboxing small records #671

e Proper C calling convention in FFI #444
o Compiling to MLIR?

https://github.com/pen-lang/pen/issues/468
https://github.com/pen-lang/pen/issues/671
https://github.com/pen-lang/pen/issues/444

Summary

e Progress
o Heap reuse In record updates

e Next plans
o Relaxed atomic reference counting

o Record unboxing

Benchmark (old)

e Map insertion (with list iteration)
e Element count: 100,000

Before:

> time ./app
/Japp 0.94s user 0.08s system 95% cpu 1.064 total

> valgrind ./app
total heap usage: 3,414,149 allocs, 3,414,074 frees, 290,931,552 bytes allocated

After:

> time ./app
/Japp 1.10s user 0.05s system 95% cpu 1.202 total

> valgrind ./app
total heap usage: 3,446,295 allocs, 3,446,220 frees, 307,647,472 bytes allocated

