
Array-based Lisp?
@raviqqe

https://github.com/raviqqe

Daydreaming about an array-based Lisp
language...

Progress so far
https://github.com/raviqqe/arachne

Single-word runtime value with NaN boxing

Reference counting GC

Interpreter

AST-based implementation of primitive operations

Bytecode VM
Work in progress...

https://github.com/raviqqe/arachne

Virtual machine
Stack machine

Instructions

nil , float64 , symbol , local , get , set , length , add , subtract , multiply ,
divide , call , closure , equal , array , drop , dump , jump , return

nil , float64 , symbol : Pushes a constant.

local : Gets a value of a local variable.

get : Gets a value from an array.

set : Sets a value to an array.

Types
Float64

Symbol

Function

Array

Nil
() = 0 = false

Design decisions
Operand evaluation order & argument order in a stack

Scheme doesn't specify its operand evaluation order in its specification.

Tight or loose coupling between bytecode compiler and VM

Is it ok to embed runtime values into bytecodes?

Do we want to save bytecodes of modules in a file system?

Next tasks...
call instruction

Closures

Summary
Daydreaming a language is fun.

Ribbit
https://github.com/udem-dlteam/ribbit

AOT compiler + RVM

Everything is a rib.
Rib is a three-word data structure.

Objects

#1 #2 #3

car cdr type tag

Bytecodes

You can GC bytecodes!

https://github.com/udem-dlteam/ribbit

